WRF-Fire
- This is a page with basic information about a software. Please see Template for creating software pages for what should be here.
WRF-Fire combines the Weather Research and Forecasting model (WRF) with a fire code implementing a surface fire behavior model, called SFIRE, based on semi-empirical formulas calculate the rate of spread of the fire line (the interface between burning and unignited fuel) based on fuel properties, wind velocities from WRF, and terrain slope. The fire spread is implemented by the level set method. The heat release from the fire line as well as post-frontal heat release feeds back into WRF dynamics, affecting the simulated weather in the vicinity of the fire. The fire code is written in Fortran 90 following WRF coding conventions. It is integrated as a physics option, called from WRF as a subroutine. It calls WRF libraries for utilities such as I/O and communication between MPI processes. The fire code executes on a part of the domain, called a tile (in WRF nomenclature). All communication between the tiles is in the caller; thus, one time step requires multiple calls to WRF-Fire.
WRF-Fire is essentially a reimplementation of CAWFE with the weather model replaced by WRF and with the fire spread implemented by the level set method in SFIRE. The subroutines for the computation of the rate of spread and for the insertion of the heat flux to the atmosphere are taken from CAWFE. Click on the following poster for the origins and a summary of current capabilities of WRF-Fire:
Distribution
WRF-Fire is public domain software, released under the WRF public domain notice and disclaimer.
WRF release
WRF-Fire is included in WRF since version 3.2, released on April 2, 2010, maintained and distributed by NCAR as a part of WRF at WRF download page. See the NCAR WRF-Fire page for further information.
Development version
See How to get WRF-Fire and How to run WRF-Fire for installation instructions for the development version, which contains the latest features and bug fixes. We strive to transfer the development code in the yearly WRF release. So, you need to get the development version if you want us anything from us sooner than in a year or two. We are making the development version publicly available in hope that it will be useful; the code has been changing quite rapidly, with important features and an occasional bug fix added between WRF releases. The head of the master branch should contain tested stable code at any time. The development version also contains a number of additional tools such as diagnostics. Additional guides to those tools and more is available here at the list of WRF-Fire pages.
The WRF-Fire code in WRF version 3.3, expected to be released in March 2011, is from the master branch of the development version as of early November 2010.
Contact
- Jonathan Beezley, Janice Coen, Jan Mandel
File format
All input, output, and restart files (with the complete model state) are in NetCDF format.
Programming language and environments
Fortran 90 with CPP preprocessor. Part of the WRF code is generated by C programs from a description in the registry.
Documentation
Technical description
- Description of the fire scheme in WRF describes the algorithms and software structure of WRF-Fire. It is intended to become a chapter in the WRF Technical Note in the future. The description is based on sections Fireline propagation model and Level set-based wildland file model in Jan Mandel, Jonathan D. Beezley, Janice L. Coen, Minjeong Kim, Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models, IEEE Control Systems Magazine 29, Issue 3, June 2009, 47-65. Preprint at arXiv:0712.3965, December 2007.
User's guides
- WRF-Fire user's guide, updated continuously with the software as distributed by the developers.
- The WRF-Fire pages on this wiki, updated continuously.
- The WRF-Fire chapter in the WRF 3.2 User's guide for the version frozen in the WRF release.
Support
Mailing list
Questions and suggestions can be sent to the maling list at http://mailman.ucar.edu/mailman/listinfo/wrf-fire. Please subscribe to this list for further support, announcements, questions, and discussions.
Email support for the development version
Questions regarding the development version (from the git repository) can be sent the the list above, or email the developers directly. When you write us, please:
- Make sure you test the issue first on the code exactly as you have received it from the git repository as described in How to get WRF-Fire
git diff
should return no output- please verify that you are on the latest commit on the master branch from the repository
- Recompile the code from scratch after typing
clean -a
first - Send us the first line of the output of the command
git log
to identify the version - Send us sufficient information to identify and reproduce the problem if needed (output of wrf compilation, namelist.input, output from the run)
Email support for code in WRF release
The version of WRF-Fire in the WRF download is supported by NCAR. Please contact wrfhelp@ucar.edu with any questions regarding the version of WRF-Fire in the WRF release.
Wiki
We welcome contributions and discussion on the pages of this wiki. Please see the Main Page for How to get an account.
- The WRF-Fire wish list and Talk:WRF-Fire wish list are intended for further discussions regarding future developments of WRF-Fire.
- See the list of WRF-Fire pages for many quick guides how to do useful things, such as diagnostics and visualization
Publications
Contributors
- Janice Coen (NCAR) developed the physics components of the fire model in CAWFE (Coen (2005) and Clark et al. (2004)), in particular the fire spread rate and the heat flux insertion modules, which were adopted into WRF-Fire with no substantial changes.
- Ned Patton (NCAR) ported the fire code from (Clark et al., 2004) and interfaced it with WRF (Patton and Coen, 2004).
- Minjeong Kim and Jan Mandel (University of Colorado Denver) have identified a version of the level set metod suitable for fire spread, and developed a prototype Matlab code.
- Jan Mandel (University of Colorado Denver) is the lead programmer of WRF-Fire. He has implemented the fire spread by the level set method as a parallel WRF-compliant code with assistance from Jonathan Beezley and Minjeong Kim, starting from Ned Patton's WRF interface and using the subroutines for the spread rate computation and the insertion of heat fluxes into the atmosphere from CAWFE.
- John Michalakes (formerly NCAR, now NREL) modified WRF to support refined grids (submesh) for the fire code.
- Jonathan Beezley (University of Colorado Denver) has further modified WRF to support the fire software, provided the software engineering infrastructure, has set up and maintains the git repository, maintains synchronization with WRF changes, and developed the modified version of WPS for WRF with the fire model to enable the use of real data.
- Volodymyr Kondratenko (University of Colorado Denver) has improved memory handing in the computation of remaining fuel.
- Adam Kochanski (University of Utah) has contributed variable atmospheric bubble initialization and suggested the walking line ignition. He is currently leading the validation effort.
- Kara Yedinak (Washington State University) has improved in fire initialization. See discussion
See also
External links
- WRF users page with links to download and documentation
- WRF-ARW Users Guide v. 3.2 (direct link)
- Technical description of WRF-ARW v. 3 (direct link)
- Graph of the commits in the repository