WRF-Fire: A Wildland Fire Behavior module for WRF

Contributions from:

Jonathan Beezley, Janice Coen, Jan Mandel, John Michalakes, Ned Patton

Applications

- Framework for fire weather community collaboration
- Studies of fire behavior:
 - Causes of extreme fire behavior 1-10's of m grid spacing
 - Weather-fire dynamics 100s of m
 - Forecasting of fire progressions 1000s of m
- Future connection to other WRF modules. Ex. WRF-Fire + WRF-Chem
 - Air Quality impacts of fires on both event scale and regional air quality

Fire model components

Fire behavior

- Current
 - Surface fire spread velocity from wind and terrain slope; includes many physical effects, such as pre-heating and drying
- Future
 - Crown fire (i.e. fire traveling through treetops), was in the previous CAWFE model
 - Explicit modeling of fuel pre-heating and drying by radiation
 - Jumping fire breaks
 - Combustion/CFD surface atmosphere layer model

Fire interactions

- Current
 - Wind drives the fire spread
 - Fire model produces latent and sensible heat fluxes (and a tracer smoke flux) to the lowest levels (exponential decay set by a scaling factor) of the atmospheric model
- Future: more complete exchange of state
 - Emissions feed to chemical model
 - Fuel moisture response to weather
 - · Retention of heat in the ground

Fire input data

- Terrain need finer than 30 sec.
 - Current: interpolated from surface height in WRF, blocky fire and wind behavior
 - Future: create terrain height data in WPS both for atmosphere and fire from a single high resolution data set, smoothing
- Fuel data on subgrid:
 - Current: Surface fuel category data (1 integer per subgrid cell) from LANDFIRE (http://landfire.cr.usgs.gov/) input through WPS
 - Future: Fuel state (fuel moisture), vertical fuel profile: canopy fuel (amount, physical characteristics, state)
- Longitude and latitude: need < 1m resolution
 - Current: subgrid coordinates interpolated from single precision WRF arrays; easily 20% error in fire mesh size/shape due to rounding
 - Future: create higher accuracy subgrid node coordinates in WPS (double precision, or an offset scheme)

Fire namelist parameters

- Number of fires
- Ignition time and location
- Type of ignition: spot (with radius) or line (with thickness)
- Parameters of the numerical methods (for testing or support only)

Coupled model

WRF: **first_rk_step_part1** call sfire_driver

WRF: first_rk_step_part2: add tendencies from fire

wind temperature and moisture tendencies

Driver: get grid variables, get flags, interpolation calls, OpenMP loops, DM halos

Atm: one tile: temperature and moisture tendencies from heat fluxes

Model: one time step, one tile: winds in, heat fluxes out

Phys: sensible and latent heat fluxes from fuel loss, fire rate of spread

Core: time step for the level set equation, compute fuel loss. *Dimensionless*.

Util: interpolation, WRF stubs, debug I/O,...

WRF: error messages, log messages, constants,...

Standalone model

MAIN

Model: one time step, one tile: winds in, heat fluxes out

Core: time step for the level set equation, compute fuel loss. *Dimensionless*.

Phys: sensible and latent heat fluxes from fuel loss, fire rate of spread

Util: interpolation, WRF stubs, debug I/O,...

Wrf_fakes: error messages, log messages, constants,...

The fire model: fireline propagation

Rate of spread of a surface fire in the normal direction n is a function of fuel properties r modified by winds near the surface w and terrain slope g:

$$S = r + c(w \cdot n)^{\alpha} + d(g \cdot n)^{\beta}$$

The fire model: fuel consumption

ignition $fuel fraction left = e^{-\frac{\text{time from ignion}}{\text{time constant of fuel}}}$ time

Time constant of fuel:

30 sec - Grass burns quickly

1000 sec – Dead & down branches(~40% decrease in mass over 10 min)

Evolving the fireline by the level set method

Right-hand side $< 0 \rightarrow$ Level set function goes down \rightarrow fire area grows

Representation of the fire area by a level set function

- The level set function is given on center nodes of the fire mesh
- Interpolated linearly, parallel to the mesh lines

Fireline connects the points where the interpolated values are 0

Numerical methods

- All arrays based at fire grid cell centers
- The level set equation is advanced by 2nd order Runge-Kutta method, with special modifications developed for the stability of the level set method
- One level-set equation time step per call from WRF
- Error exit if the time step is too short for stability. Not a problem because, so far, the WRF restriction on step size has been more stringent, for the atmosphere/fire refinement ratio 10:1.
- Fuel loss computed by numerically over a local submesh in every fire cell, at least 2x2

Registry fire variables on the fire mesh

- All fire variables based at the centers of the fire grid cells
- State:
 - LFN level set function
 - TIGN_G time of ignition of ground fire
 - FUEL_FRAC fuel amount remaining, between 0 and 1
- For one timestep only
 - UF, VF winds interpolated to fire mesh (input)
 - FRGNHFX, FQRNHFX heat and moisture flux (output)
 - LFN_OUT a copy of LFN, needed because of parallelism
- Set once and then constant
 - FXLONG, FXLAT, ZSF coordinates of fire mesh nodes
 - FUEL_TIME, BBB, BETAFL, PHIWC, R_0, FGIP, ISCHAP fuel coefficients

Relevant registry variables on the atmosphere mesh

- Needed on the finest mesh (innermost domain) only
- Accessed in the driver from grid and config_flags
- Input variables (existing in the registry)
 - XLONG, XLAT, HT surface nodes coordinates
 - Z_AT_W, DZ8W
 - U2, V2 horizontal wind components
- Output variables (added to the registry)
 - RTHFRTEN, RQVFRTEN temperature and moisture tendencies

Files affected

- dyn_em/module_first_rk_step_part1.F
 - added call sfire_driver
- dyn_em/module_first_rk_step_part2.F
 - tendencies from the fire added to the arguments of update_phy_ten
- dyn_em/Makefile
- dyn_em/module_initialize_fire.F
- phys/module_physics_addtendc.F
 - loops to add temperature and vapor tendencies
- Registry/Registry_EM
 - Added fiew variables and halos
- phys/module_fr_sfire_*.F
 - the fire model itself
- phys/Makefile
 - added the new files
- namelist.input
 - added fire parameters

Subgrid data support in WPS

- Need to produce met files compatible with WRF i/o:
 - Dimensions named south_north_subgrid and west_east_subgrid
 - Refined from atmospheric grid by a factor of sr_x/sr_y as given in WRF namelist.input
- Experimental implementation is available:
 - New GEOGRID.TBL data parameter, subgrid=yes indicates
 that the given data field should be created as a WRF subgrid array
 - New namelist.wps parameters, sr_x/sr_y, gives subgrid refinement for the given domain
- Limitations of the current experimental implementation:
 - No parallel support
 - Not all interpolation options supported on subgrid fields
 - Not thoroughly tested

Data assimilation

Issues

- Standard DA methods do not work
- The state distribution is strongly non-gaussian, centered around burning and not burning states at every point
- Need to use spatial corrections, not amplitude only

Current

- Morphing EnKF shows promise
- Replaces linear combinations in EnKF by intermediate states by deformation of the domain
- Prototype code exists
- Observation function = whole array

Future

- Release-quality code
- New observation functions for aerial fire photographs and fire sensors (airborne, UAV, satellite)
- Reuse existing observation functions for weather
- Develop new algorithms for assimilation of time series of point-based data (sensors, weather station) in the morphing filter

Preliminary data assimilation results

