Difference between revisions of "DDDAS: Data Dynamic Simulation for Disaster Management"
(Created page with '<table style="border: medium none; border-collapse: collapse; height: 822px;" width="631" border="1" cellpadding="0" cellspacing="0"> <tbody> <tr style="page-break-inside: avoid;…') |
|||
Line 1: | Line 1: | ||
<table style="border: medium none; border-collapse: collapse; height: 822px;" width="631" border="1" cellpadding="0" cellspacing="0"> | <table style="border: medium none; border-collapse: collapse; height: 822px;" width="631" border="1" cellpadding="0" cellspacing="0"> | ||
− | + | ||
<tr style="page-break-inside: avoid; height: 41.4pt;"> | <tr style="page-break-inside: avoid; height: 41.4pt;"> | ||
<td style="border: 1pt solid windowtext; padding: 0in 5.4pt; width: 2.95in; height: 41.4pt;" valign="top" width="354"> | <td style="border: 1pt solid windowtext; padding: 0in 5.4pt; width: 2.95in; height: 41.4pt;" valign="top" width="354"> | ||
Line 11: | Line 11: | ||
<tr style="page-break-inside: avoid; height: 32.65pt;"> | <tr style="page-break-inside: avoid; height: 32.65pt;"> | ||
<td style="padding: 0in 5.4pt; width: 2.95in; height: 32.65pt;" valign="top" width="354"> | <td style="padding: 0in 5.4pt; width: 2.95in; height: 32.65pt;" valign="top" width="354"> | ||
− | <p><strong>Project Title: | + | <p><strong>Project Title:</strong><br /> |
− | + | ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management</p> | |
</td> | </td> | ||
</tr> | </tr> | ||
Line 18: | Line 18: | ||
<td style="padding: 0in 5.4pt; width: 2.95in; height: 48.15pt;" valign="top" width="354"> | <td style="padding: 0in 5.4pt; width: 2.95in; height: 48.15pt;" valign="top" width="354"> | ||
<p>Investigators:</p> | <p>Investigators:</p> | ||
− | <p>Jan Mandel, Anatolii Puhalski, Craig Johns, Leopoldo</span> P. Franca, Craig C. Douglas, Janice L. Coen, Anthony Vodacek, Robert Kremens, Guan Qin | + | <p>Jan Mandel, Anatolii Puhalski, Craig Johns, Leopoldo</span> P. Franca, Craig C. Douglas, Janice L. Coen, Anthony Vodacek, Robert Kremens, Guan Qin</p> |
</td> | </td> | ||
</tr> | </tr> | ||
<tr style="page-break-inside: avoid; height: 87.7pt;"> | <tr style="page-break-inside: avoid; height: 87.7pt;"> | ||
<td style="padding: 0in 5.4pt; width: 2.95in; height: 87.7pt;" valign="top" width="354"> | <td style="padding: 0in 5.4pt; width: 2.95in; height: 87.7pt;" valign="top" width="354"> | ||
− | <p>Institution:</p> | + | <p><b>Institution:</b></p> |
− | <p | + | <p>University of Colorado at Denver, University of Kentucky, National Center for Atmospheric Research, Rochester Institute of Technology, Texas A&M University</p> |
</td> | </td> | ||
</tr> | </tr> | ||
<tr style="page-break-inside: avoid; height: 63pt;"> | <tr style="page-break-inside: avoid; height: 63pt;"> | ||
<td style="padding: 0in 5.4pt; width: 2.95in; height: 63pt;" valign="top" width="354"> | <td style="padding: 0in 5.4pt; width: 2.95in; height: 63pt;" valign="top" width="354"> | ||
− | <p><strong>Website: | + | <p><strong>Website:</strong></p> |
− | <p> | + | <p>[http://www-math.cudenver.edu/~jmandel/fires math.ucdenver.edu/~jmandel/fires]</p> |
</td> | </td> | ||
<td style="padding: 0in 5.4pt; width: 261pt; height: 63pt;" valign="top" width="435"> | <td style="padding: 0in 5.4pt; width: 261pt; height: 63pt;" valign="top" width="435"> | ||
− | <p>Description of Graphic Image:<br /> Simulated sparse measurements at the locations marked by triangles are assimilated into a highly nonlinear model of temperature at the front of an advancing fire. The red line is the truth and the green points are an ensemble of simulations. The standard Ensemble Kalman Filter (EnKF) method matches the data points well, but it does not approximate the truth away from data points (b). In several assimilation steps, this would result in a breakdown of the filter. A new stabilized method provides good match for the | + | <p>Description of Graphic Image:<br /> Simulated sparse measurements at the locations marked by triangles are assimilated into a highly nonlinear model of temperature at the front of an advancing fire. The red line is the truth and the green points are an ensemble of simulations. The standard Ensemble Kalman Filter (EnKF) method matches the data points well, but it does not approximate the truth away from data points (b). In several assimilation steps, this would result in a breakdown of the filter. A new stabilized method provides good match for the whole solution and a stable filtering process (c).</p> |
</td> | </td> | ||
</tr> | </tr> | ||
Line 71: | Line 71: | ||
</td> | </td> | ||
</tr> | </tr> | ||
− | |||
</table> | </table> |
Revision as of 19:09, 8 March 2010
<img alt="Figure 1" src="images/documents/figures/nuggett_fig01.gif" width="329" height="290" /> |
|
Project Title: |
|
Investigators: Jan Mandel, Anatolii Puhalski, Craig Johns, Leopoldo P. Franca, Craig C. Douglas, Janice L. Coen, Anthony Vodacek, Robert Kremens, Guan Qin |
|
Institution: University of Colorado at Denver, University of Kentucky, National Center for Atmospheric Research, Rochester Institute of Technology, Texas A&M University |
|
Website: |
Description of Graphic Image: |
Project Description and Outcome |
|
Ideas:<o:p></o:p>The goal of this project is to provide a data driven real-time atmosphere-wildfire model with data acquired from weather data streams, sensors on location, and airborne images. The project is developing new data driven assimilation methods for highly nonlinear problems. The model consists of an ensemble of simulation. The data assimilation methods modify the model from data that arrives while the model is running.<o:p></o:p> |
|
Tools:<o:p></o:p>A data driven massively parallel software framework was developed to link data assimilation algorithms, data acquisition, and an ensemble of simulations. |
|
<img alt="Figure 2" src="images/documents/figures/nuggett_fig02.jpg" v:shapes="_x0000_i1026" width="576" height="433" /> |
Description of Graphic Image: |