Difference between revisions of "WRF-Fire"

From openwfm
Jump to navigation Jump to search
(→‎Publications: -> Contributors)
Line 18: Line 18:
 
* [http://www.mmm.ucar.edu/wrf/users/download/get_source.html WRF download]
 
* [http://www.mmm.ucar.edu/wrf/users/download/get_source.html WRF download]
  
==Documentation and support==
+
==Documentation==
  
Please see
+
===Technical description===
  
* [[WRF-Fire documentation]]  
+
* [[Media:Wrf-fire-doc.pdf|Description of the fire scheme in WRF]] describes the algorithms and software structure of WRF-Fire. It is intended to become a chapter in the [http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf WRF Technical Note] in future.
* [[List of WRF-Fire pages]]
+
 
* [[WRF-Fire user support]]
+
* The description is based on sections ''Fireline propagation model'' and ''Level set-based wildland file model'' in Jan Mandel, Jonathan D. Beezley, Janice L. Coen, Minjeong Kim, ''Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models'', [http://dx.doi.org/10.1109/MCS.2009.932224 IEEE Control Systems Magazine 29, Issue 3, June 2009, 47-65]. Preprint at [http://arxiv.org/abs/0712.3965 arXiv:0712.3965], December 2007. This is currently the only journal publication about WRF-Fire.
 +
 
 +
===User's guides===
 +
 
 +
* [[Media:Users guide chap-wrf-fire.pdf|User's guide]], updated continuously with the software as [[How to get WRF-Fire|distributed by the developers]].
 +
* The [[List of WRF-Fire pages|WRF-Fire pages]] on this wiki, updated continuously.
 +
* The WRF-Fire chapter in the [http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html WRF 3.2 User's guide] for the version frozen in the [http://www.mmm.ucar.edu/wrf/users/downloads.html WRF release].
  
 
==Publications==
 
==Publications==

Revision as of 16:12, 29 May 2010

WRF-Fire combines the Weather Research and Forecasting model (WRF) with a fire spread model, implemented by the level set method.

WRF-Fire is written in Fortran 90 following WRF coding conventions. It is called from WRF as a subroutine and it calls WRF libraries for utilities such as I/O and communication between MPI processes. WRF-Fire executes on a part of the domain, called a tile (in WRF nomenclature). All communication between the tiles is in the caller; thus, one time step requires multiple calls to WRF-Fire. WRF-Fire can also run independently without an atmosphere model by substituting its own main program and linking with stubs that replace the WRF subroutines called, though this capability has fallen behind at the moment.

Distribution

Current development version

This version also contains a number of additional tools such as Matlab scripts for visualization. See How to get WRF-Fire and How to run WRF-Fire for installation instructions.

From WRF release

WRF-Fire is included in WRF 3.2, released on April 2, 2010.

Documentation

Technical description

  • The description is based on sections Fireline propagation model and Level set-based wildland file model in Jan Mandel, Jonathan D. Beezley, Janice L. Coen, Minjeong Kim, Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models, IEEE Control Systems Magazine 29, Issue 3, June 2009, 47-65. Preprint at arXiv:0712.3965, December 2007. This is currently the only journal publication about WRF-Fire.

User's guides

Publications

Description of WRF-Fire

Related papers and presentations

  • Jan Mandel, Jonathan D. Beezley, and Volodymyr Y. Kondratenko, Fast Fourier Transform Ensemble Kalman Filter with Application to a Coupled Atmosphere-Wildland Fire Model, MS2010, submitted. Preprint arXiv:1001.1588

Contributors

  • Janice Coen developed the physical fire model, which is the same as in CAWFE (Coen (2005) and Clark et al. (2004))
  • Ned Patton (Patton and Coen, 2004), ported the earlier fire code from (Clark et al., 2004) and interfaced it with WRF.
  • Jan Mandel is currently leading the software development. He wrote the fire component in WRF-Fire using Ned Patton's interface, with advice from Janice Coen and assistance from Jonathan Beezley and Minjeong Kim.
  • John Michalakes modified WRF to support refined grids (submesh) for the fire code.
  • Jonathan Beezley has further modified WRF to support the fire software, provided the software engineering infrastructure, and developed the modified version of WPS for WRF with the fire model.
  • Volodymyr Kondratenko has improved memory handing in computation of fuel left
  • Adam Kochanski has contributed variable atmospheric bubble initialization.

External links