Difference between revisions of "User:Jmandel/chem"
Line 3: | Line 3: | ||
==Tracers== | ==Tracers== | ||
− | Tracers are compiled in only when WRF_CHEM is active. See [https://github.com/jbeezley/wrf-fire/blob/6a4a405d2c8ad0c148cacb3b72d9291c17308b34/wrfv2_fire/dyn_em/start_em.F#L1173 start_em.F#L1173] [https://github.com/jbeezley/wrf-fire/blob/6a4a405d2c8ad0c148cacb3b72d9291c17308b34/wrfv2_fire/dyn_em/solve_em.F#L2421 solve_em.F#L2421] | + | Tracers are compiled in only when WRF_CHEM is active. See [https://github.com/jbeezley/wrf-fire/blob/6a4a405d2c8ad0c148cacb3b72d9291c17308b34/wrfv2_fire/dyn_em/start_em.F#L1173 dyn_em/start_em.F#L1173] [https://github.com/jbeezley/wrf-fire/blob/6a4a405d2c8ad0c148cacb3b72d9291c17308b34/wrfv2_fire/dyn_em/solve_em.F#L2421 dyn_em/solve_em.F#L2421] |
They are initialized in [https://github.com/jbeezley/wrf-fire/blob/6a4a405d2c8ad0c148cacb3b72d9291c17308b34/wrfv2_fire/chem/module_input_tracer.F chem/module_input_tracer.F] | They are initialized in [https://github.com/jbeezley/wrf-fire/blob/6a4a405d2c8ad0c148cacb3b72d9291c17308b34/wrfv2_fire/chem/module_input_tracer.F chem/module_input_tracer.F] |
Revision as of 17:55, 3 January 2013
See Coupling with WRF-Chem for the users' guide.
Tracers
Tracers are compiled in only when WRF_CHEM is active. See dyn_em/start_em.F#L1173 dyn_em/solve_em.F#L2421
They are initialized in chem/module_input_tracer.F
Tracer accessed as grid%tracer(i,k,j,p_smoke)
real,intent(inout),dimension( ims:ime,kms:kme,jms:jme,num_tracer ) :: tracer
from use module_state_description , only: num_tracer, p_smoke
which has INTEGER, PARAMETER :: tracer_smoke = 1
similar code in chem/module_add_emiss_burn.F: chem(i,k,j,p_smoke) = chem(i,k,j,p_smoke)+ebu(i,k,j,p_ebu_co)*conv_rho
defined in ./inc/scalar_indices.inc: P_smoke = 1 ; F_smoke = .FALSE.
Chem variables and conversion
from registry.chem: package radm2sorg chem_opt==2 - chem:so2,sulf,no2,no,o3,hno3,h2o2,ald,hcho,op1,op2,paa,ora1,ora2,nh3,n2o5,no3,pan,hc3,hc5,hc8,eth,co,ol2,olt,oli,tol,xyl,aco3,tpan,hono,hno4,ket,gly,mgly,dcb,onit,csl,iso,hcl,ho,ho2,so4aj,so4ai,nh4aj,nh4ai,no3aj,no3ai,naaj,naai,claj,clai,orgaro1j,orgaro1i,orgaro2j,orgaro2i,orgalk1j,orgalk1i,orgole1j,orgole1i,orgba1j,orgba1i,orgba2j,orgba2i,orgba3j,orgba3i,orgba4j,orgba4i,orgpaj,orgpai,ecj,eci,p25j,p25i,antha,seas,soila,nu0,ac0,corn
state real so2 ikjftb chem 1 - i0{12}rhusdf=(bdy_interp:dt) "so2" "SO2 concentration" "ppmv"
Call chain: chem_driver.F -> emissions_driver.F -> add_emiss_burn.F, plumerise_driver -> plumerise module_emissions_anthropogenics
gas emissions are converted to the concentration changes in module_emissions_anthropogenics.F located in WRFV3/chem. Basically, since each gas occupies the same volume under the same P and T, all gass species are converted from mole/km2h to delta ppmv (which is 1E6 times mixing ratio in mole/mole) in the same way.
The conversion looks like that:
E is emission [mole/(km^2 hr)] conv_rho is converted emission in ppmv [-] rho_phy(i,jk) is air density [kg/m3} dz8w(i,j,k) is vertical grid spacing for the lowest model layer [m] dtstep is model time step [s]
8.047e-6 is conversion factor – km^2 hr to m^2 s (2.7778e-10) * molecular mass of air 0.02897 * 1e6 (mol/mol -> part per million) = 8.047e-6
conv_rho= E*dtstep*8.047E-6/(rho_phy(I,k,J)*dz8w(i,k,j))
Both rho_phy(I,k,J) and dz8w(i,k,j) are WRF variables responding to the change in the pressure and temperature so the plume expansion is taken care of automatically.
So, the code should be
! on the fire mesh ! ! emission (g/m^2) = initial fuel load (kg/m^2) * fraction burned (1) * emission of the chemical species from the given fuel (g/kg) emis_fgrid(i,j,p_species) = fgip(i,j) * fuel_frac_burnt(i,j) * emis_finn(ifuel(i,j),p_species) ! ! average to the atmospheric mesh to get emis_grid(i,j,p_species) (g/m^2) ! ! on the atmospheric mesh ! ! mols of air in the 1st layer (mol/m^2) = (air density (kg/m^3) * layer height (m)) / molecular mass of air (kg/mol) air_mols = rho_phy(i,kts,j)*dz8w(i,kts,j) / 28.97e-3 ! ! emissions (mols/m^2) = emissions (g/m^2) / molecular mass of the species (g/mol) emis_mols = emis_grid(i,j,p_species) / mol(p_species) ! the constants mols(p_species) are probably in chem somewhere?? ! ! add the concentration in ppmv to chem chem(i,kts,j,p_species) = chem(i,kts,j,p_species) + 1e-6 * emis_mols / air_mols
or composed:
inv_mol = 1/mol(p_species) conv_fact = 28.97e-9 / (rho_phy(i,kts,j)*dz8w(i,kts,j)) chem(i,kts,j,p_species) = chem(i,kts,j,p_species) + conv_fact * inv_mol